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grease (Fisher Chemical Company) for low temperature measurements, and an 
epoxyphenolic resin (Bloomingdale Rubber Company) for high temperature measure­
ments. 

The following data were determined in our ultrasonic experiments: (a) both P 
and S velocities in each specimen at room conditions, (b) pulse repetition frequencies 
(PRF) corresponding to these velocities as a function of pressure to about 7·5 kb at 
23°C, and (d) these PRFs corresponding to the velocities at 1 bar in the temperature 
range of 0 to 200 °C. 

The quantity of interest in the ultrasonic experiments, in which pressure is a 
variable, is the first derivative of an isotropic elastic modulus M j with respect to 
hydrostatic pressure evaluated at zero-pressure; this will be denoted hereafter as 
{dMj/dp}p=o . This is an isothermal derivative, although the velocity-of-sound 
measurements involve an adiabatic process. Thus, the acoustic data resulting from 
such experiments are thermodynamically mixed isothermal pressure derivatives of the 
adiabatic modulus. For a modulus M j , where the subscript j refers to either compres­
sional (P) or shear (S) mode, we have 
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where R j = d(fJp/fjo) 2/dp, and this is obtained by fitting (fjp/fO)2 versus pressure data 
to a straight line by the method of least squares, following Bacon (1953). KT is the 
isothermal bulk modulus, and it is related to the adiabatic bulk modulus K s by 
KT = Ks/(l + IX. TYG), where IX. is the coefficient of volume expansion, YG is Gruneisen's 
ratio, and T is temperature in oK. It is clear from equation (1) that the measurements 
of isotropic compressional and shear velocities of sound at a reference temperature 
and ultrasonic pulse-repetition-frequencies fj corresponding to these velocities as a 
function of pressure (also at the reference temperature) yield the values of {dMJidp} p = o. 

The use of equation (1) for porous materials involves a two-step correction. The 
first correction is for crack-pores. The elastic properties, if measured on a poly­
crystalline sample, are the apparent properties of the sample; they mayor may not 
correspond to the intrinsic elastic properties of the sample being studied. Certain 
hot-pressed samples often contain microcracks. Effects of these microcracks on the 
elastic properties of the samples should be given careful attention by the investigator. 
Helpful references to these effects as observed on rocks are Brace (1965) and Walsh 
(1965). The most practical method for finding the intrinsic elastic properties of such 
samples is to measure both P and S velocities as a function of hydrostatic pressure to 
about 7 to 10 kb. From these Jj(P) data, velocities at zero-pressure are found by 
extrapolating high-pressure results back to the zero-pressure point. These velocities 
found at the origin present crack-free but not pore-free values; isotropic elastic 
properties at zero-porosity can be evaluated from these data. 

The second correction is concerned with pores in the samples and their rate of 
change with pressure. It was observed that the quantity R j in the second term of 
equation (1) is to the first order independent of small porosity at a pressure range of 
2 to 10 kb, a range of pressure most commonly utilized in ultrasonic experiments. 
Theoretical justification for this observation is difficult, if not impossible, without 
making assumptions as to size, shape, and orientations of pores in the polycrystalline 
aggregate. Furthermore, even for a pore-free aggregate, the task of determining the 
macroscopic state of stress distribution is hopelessly complicated, due to numerous 
superimposed effects which originate from the properties of the mineral grains and 
from the boundaries between them. For these reasons, a satisfactory general model for 
the elasticity of porous materials has not yet been developed, in spite of numerous 
investigations (see Walsh & Brace (1966) for a review). In an earlier analysis of 
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spherical pores, based on the work ofWalsh & Brace (1966), the author (Chung 1971a) 
indicated that the quantity (dy//dp) estimated at the origin is small and is well within 
the scatter of most experimental data. Thus, with the experimental quantity R} 
determined on a porous sample, one should be able to find the pressure coefficients 
of compressional (L.), shear (J1.) , and adiabatic bulk (K.) moduli of the non-porous 
material from equations (2) and (3) below: 

(2) 

{ 
dK ° } { dL ° } { dJ1.° } d; p:o= d; p:o-t dp p:o 

(3) 

where L.o, J1.0 , and K.o are the porosity-corrected values and the superscript CO) refers 
to the zero-porosity. 

In the ultrasonic experiments, in which temperature is a variable, we are interested 
in both P and S velocities as a function of temperature and their temperature 
coefficients evaluated at various temperatures. From these data, we find the tempera­
ture derivatives of the elastic constants in the usual way: 

(4) 

where P is the density of sample, lij is the sound velocity in the jth mode (either P or S 
mode), and IX" is the coefficient of volume expansion. We used thermal expansion 
data of Skinner (1966) and unpublished data of Singh & Simmons (1971) throughout 
this study. 

In the first-order approximation for low porosity, the porosity-sensitive poly­
crystalline elastic constants M J (where j = P, S as before) can be represented by 

(5) 

where rr is the porosity and M/ is the elastic constant of nonporous material given by 
M/ = Po (ljO)2 = 4Polo2j/. k is a constant (see, for example, a review paper by 
Walsh & Brace 1966). The temperature derivative of the porosity-sensitive elastic 
constant is then 

d;} = ( d:'/ ) (l-kY/)-M/ (k)(dY//dT). (6) 

Since (drr/dT) is practically zero, the last term drops out. Thus, from equations (5) 
and (6), we obtain 

dlnM) _ dlnM/ 
dT - dT (7) 

Equation (7) implies that the temperature coefficient of an elastic constant determined 
on a porous polycrystalline sample can be used to evaluate the elastic constant of the 
non-porous aggregate (as a function of temperature) simply by interpolating the 
room-temperature constant of the porous sample to that of the non-porous aggregate. 


